UNDERSTANDING THE RISK OF CLINICALLY SIGNIFICANT PHARMACOKINETIC-BASED DRUG-DRUG INTERACTIONS WITH DRUGS NEWLY APPROVED BY THE US FDA – A REVIEW OF RECENT NEW DRUG APPLICATIONS (2013-2016)

Jingjing Yu and Isabelle Ragueneau-Majlessi

Drug Interaction Database Program, Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle WA 98105

OBJECTIVE AND METHODS

The aim of the present work was to systematically review pharmacokinetic-based drug-drug interaction (DDI) data available in the most recent (2013-2016) New Drug Applications (NDAs) and highlight significant findings. The University of Washington Metabolism and Transport Drug Interaction Database[®] (http://www.druginteractioninfo.org/) was used to extract the results of metabolism, transport, and clinical DDI studies. All the DDI studies (new molecular entity (NME) as victim or perpetrator) with AUC changes \geq 2-fold or < 2-fold but triggering dose recommendations were included in the analysis.

RESULTS

- A total of 103 NDAs (including 14 combination drugs, total NMEs = 107) were approved in the past four years, with 95% of NDAs containing *in vitro* and/or *in vivo* metabolism data and 79% containing transport information.
- The most represented therapeutic areas were oncology (21%) and anti-infective drugs (20%; including 10 antivirals, 6 antibiotics, 4 antifungals, and 1 anti-parasitic).

NMEs as Substrates

In vitro, CYP3A was found to be the primary enzyme involved in the metabolism of 64 NMEs, followed by CYP2D6 (N=27) and the CYP2C family. For transporters, 47 and 20 NMEs were shown to be in vitro substrates of P-gp and BCRP, respectively, followed by 8 NMEs for OATP1B1/3.

Sensitive substrates (AUC ratios \geq 5)

Moderate sensitive substrates ($2 \le AUC$ ratios < 5)

Twenty-eight drugs were found to be moderate sensitive substrates (2 \leq AUC ratios < 5), with approximately 70% of the interactions being related to alteration of CYP3A activity, and 30% being transporter-mediated, including P-gp, BCRP, and OATP1B1/3 (Figure 3). Antivirals (29%) were the most represented drugs.

Figure 3. Mechanisms of inhibition DDIs with $2 \le AUC$ ratios < 5, NMEs as substrates (N=35 DDIs)

AUC ratios < 2 with label recommendations

Twenty-one drugs were found to have lower increases in exposure (less than 2-fold) but still triggering labeling recommendations. The most represented drug areas were cancer treatments (36%) and antivirals (18%). CYP3A mediated over half of these DDIs.

NMEs as Inhibitors

in vitro, CYP3A inhibition was the most often observed mechanism (N=47), followed by inhibition of CYP2C9 (N=33), CYP2C8 (N=32), CYP2C19 (N=30), and CYP2D6 (N=18). For transporters, 41, 37, and 34 NMEs inhibited OATP1B1/3, P-gp, and BCRP *in vitro*, respectively.

Table 1. Clinical DDIs with AUC ratios \geq 5 (for inhibition) or \leq 0.2 (for induction)

Victim Drug	Inhibitor	Main Enzymes/ Transporters Possibly Involved	Max AUC Ratio	Max C _{max} Ratio
Inhibition DDIs w	ith AUC ratios ≥	5, NMEs as substrates		
		CYP3A, P-gp, BCRP,		
Paritaprevir	Ritonavir	OATP1B1/3	47.43	28.07
Eliglustat	Paroxetine	CYP2D6	28.40 (EMs), 5.20 (IMs)	22.00 (EMs), 4.10 (IMs)
Ibrutinib	Ketoconazole	СҮРЗА	23.90	28.60
Grazoprevir	Cyclosporine	OATP1B1/3	15.25	17.03
Naloxegol	Ketoconazole	CYP3A4 ^a	12.42	9.12
Dasabuvir	Gemfibrozil	CYP2C8	9.90	1.91
Ivabradine	Ketoconazole	CYP3A4 ^a	7.70	3.60
Simeprevir	Ritonavir	CYP3A ^a	7.18	4.70
Tasimelteon	Fluvoxamine	CYP1A2	6.87	2.28
Pirfenidone	Fluvoxamine	CYP1A2	6.81 (smokers)	2.24 (smokers)
Cobimetinib	Itraconazole	CYP3A ^a	6.62	3.17
Flibanserin	Fluconazole	CYP3A4, CYP2C19	6.41	2.11
Venetoclax	Ketoconazole	CYP3A, P-gp	6.40	2.33
Isavuconazonium		СҮРЗА,		
sulfate	Ketoconazole	butyrylcholinesterase	5.22	1.09
Induction DDIs w	ith AUC ratios ≤	0.2, NMEs as substrates		
Isavuconazonium		СҮРЗА,		
sulfate	Rifampin	butyrylcholinesterase	0.03	0.25
Eliglustat	Rifampin	СҮРЗАа	0.04 (PMs), 0.10 (IMs), 0.09 (EMs)	0.05 (PMs), 0.11 (IMs), 0.09 (EMs)
Flibanserin	Rifampin	CYP3A4. CYP2C19	0.04	0.10
Ibrutinib	Rifampin	CYP3A ^a	0.08 (PBPK)	0.07 (PBPK)
Naloxegol	Rifampin	CYP3A4 ^a	0.11	0.26
Olaparib	Rifampin	CYP3A ^a	0.11	0.3
Rolapitant	Rifampin	CYP3A4	0.12	0.68
Suvorexant	Rifampin	СҮРЗА	0.12	0.36
Tasimelteon	Rifampin	CYP3A4	0.14	0.23
Palbociclib	Rifampin	CYP3A ^b	0.15	0.28
Cobimetinib	Rifampin	CYP3A ^a	0.17 (PBPK)	0.37 (РВРК)
Grazoprevir	Efavirenz	CYP3A ^c	0.17	0.13
Velpatasvir	Rifampin	CYP2B6, CYP2C8, CYP3A, P-gp. BCRP	0.19	0.29
Netupitant	Rifampin	CYP3A4	0.20	0.45

- Thirteen NMEs were identified as sensitive substrates (AUC ratios \geq 5 when co-administered with a strong inhibitor) of CYP3A (N=8), CYP1A2 (N=2), CYP2C8 (N=1), CYP2D6 (N=1), or OATP1B1/3 (N=1) (Table 1).
- Half of these sensitive substrates were antiviral or oncology drugs (Figure 1).

Antivirals (29%) Cancer treatments (21%) Central nervous system agents (14%) Antifungals (7%) Cardiovascular drugs (7%) Gastrointestinal agents (7%) Metabolism disorder treatments7%) Respiratory agents (7%)

Figure 1. Therapeutic classes of inhibition DDIs with AUC ratios \geq 5, NMEs as substrates

 CYP3A played a major role in clinically significant DDIs, involved in 2/3 of DDIs with AUC ratios \geq 5 (Figure 2). Interestingly, 75% of the sensitive CYP3A substrates were also substrates of P-gp.

- In vivo, only one NME (idelalisib) was found to be a strong inhibitor of CYP3A (Table 1). Eleven drugs showed moderate inhibition (AUC ratios of probe substrates ranging from 2.18 to 3.33) and 20 NMEs showed < 2-fold in victim exposure with labeling recommendations.
- Transporters were found to play a significant role in half of these interactions (Figure 4). Antivirals (30%) and oncology drugs (20%) were the most represented inhibitors.

Figure 4. Mechanisms of inhibition DDIs with AUC ratios \geq 1.25, NMEs as inhibitors (N=46 DDIs)

NMEs as Inducers

- In vitro, 24 NMEs induced CYP3A, while 15 and eight NMEs induced CYP2B6 and CYP1A1, respectively.
- In vivo, only seven NMEs showed clinically relevant induction. One drug (lumacaftor) was identified as a strong inducer of CYP3A (Table 1) and two drugs (dabrafenib and eslicarbazepine acetate) moderately induced CYP3A.
- The majority (60%) of induction DDIs were mediated by CYP3A.

Inhibition DDIs with AUC ratios \geq 5, NME s as inhibitors

	Ombitasvir, paritaprevir.						
Tacrolimus	dasabuvir, and	CYP3A P-gn	57 07	16.48			
Midazolam	Idelalisib	СҮРЗА	5.15	2.31			
Induction DDIs with AUC ratios \leq 0.2, NMEs as inducers							
	lvacaftor and						

	ivacattor and			
Itraconazole	lumacaftor	СҮРЗА	0.18	0.10
Ivacaftor	Lumacaftor	СҮРЗА	0.20	0.19

All DDIs had label recommendations; ^aalso a P-gp substrate; ^b also metabolized by CYP1A2, CYP2C9, and CYP2C19; ^calso a substrate of P-gp and BCRP; ^dthe strong inhibition is caused by ritonavir, which is not a NME

CONCLUSIONS

- CYP3A was confirmed to be a major contributor to clinically significant DDIs involving NMEs as victims or perpetrators.
- Transporter-based DDIs represented about 50% of all observed interactions, although most of these were weak-to-moderate.
- Among drugs with large changes in exposure (≥ 5-fold), antivirals and oncology drugs were the most represented therapeutic classes, suggesting a significant risk of clinical DDIs in these patient populations.

Figure 2. Mechanisms of inhibition DDIs with AUC ratios \geq 5, NMEs as substrates (N=16 DDIs)