Evaluating the feasibility of performing pharmacogenetic guided-medication therapy management in a retirement community: A prospective, single arm study

J Am Coll Clin Pharm. 2021;1-11
  • doi: 10.1002/jac5.1570
  • Semantic Scholar
  • Abstract

    New drug application reviews contain critical drug interaction study results with newly approved drugs tested both as victims and as perpetrators of drug-drug interactions (DDIs). Pharmacokinetic-based DDI data for drugs approved by the US Food and Drug Administration in 2013–2017 (N = 137) were analyzed using the University of Washington Drug Interaction Database. For the largest metabolism- and transporter-based drug interactions, defined as a change in exposure ≥ 5-fold in victim drugs, the mechanisms and clinical relevance were characterized. Consistent with the major role of CYP3A in drug disposition, CYP3A inhibition and induction explained a majority of the observed interactions (new drugs as victims or as perpetrators). However, transporter-mediated interactions were also prevalent, with OATP1B1/1B3 playing a significant role. As victims, 17 and 4 new molecular entities (NMEs) were identified to be sensitive substrates of enzymes and transporters, respectively. When considered as perpetrators, three drugs showed strong inhibition of CYP3A, one was a strong CYP3A inducer, and two showed strong inhibition of transporters (OATP1B1/1B3 and/or BCRP). All DDIs with AUC changes ≥ 5-fold had labeling recommendations in their respective drug labels, contraindicating or limiting the coadministration with known substrates or perpetrators of the enzyme/transporter involved. The majority of sensitive substrates or strong inhibitors were oncology and antiviral treatments, suggesting a significant risk of DDIs in these patient populations for whom therapeutic management is already complex due to poly-therapy. Pharmacogenetic studies and physiologically based pharmacokinetic models were commonly used to assess the drug interaction potential in specific populations and clinical scenarios. Finally, absorption-based DDIs were evaluated in approximately 30% of drug applications, and 14 NMEs had label recommendations based on the results.

    Organic Anion Transporting Polypeptide 2B1 – More Than a Glass-Full of Drug Interactions

    Abstract

    The importance of uptake transporters in determining drug disposition is increasingly appreciated. While the focus of regulatory agencies worldwide has been on the hepatic organic anion transporting polypeptides (OATPs)-1B1 and-1B3, there is another isoform of the OATP sub-family, OATP2B1, which should be considered equally relevant. Unlike the other members of the OATP sub-family, OATP2B1 is expressed in multiple organs in humans, including in the intestine and the liver. Similar to other OATPs, OATP2B1 mediates the hepatic and intestinal uptake of many drugs and endogenous compounds. The importance of OATP2B1 in the disposition of many drugs is highlighted by the growing recognition of its role in significant in vivo drug-drug or food-drug interactions. The dramatic changes in drug exposure attributable to inhibition of OATP2B1 highlight the importance of developing a better understanding of the clinical role of OATP2B1. This review aims to provide a thorough summary of the current understanding of the pharmacogenetics, regulation, expression and abundance of OATP2B1 in humans, as well as its clinical relevance in drug-drug and food-drug interactions.

    What Can Be Learned From Recent New Drug Applications? A Systematic Review of Drug Interaction Data for Drugs Approved by the US FDA in 2015

    Drug Metab Dispos. 2017 Jan; 45(1); 86-108.
    Published online 2016 Nov 7

    Abstract

    As a follow up to previous reviews, the aim of the present analysis was to systematically examine all drug metabolism, transport, pharmacokinetics (PK), and drug-drug interaction (DDI) data available in the 33 new drug applications (NDAs) approved by the Food and Drug Administration (FDA) in 2015, using the University of Washington Drug Interaction Database, and to highlight the significant findings. In vitro, a majority of the new molecular entities (NMEs) were found to be substrates or inhibitors/inducers of at least one drug metabolizing enzyme or transporter. In vivo, 95 clinical DDI studies displayed positive PK interactions, with an area under the curve (AUC) ratio ≥ 1.25 for inhibition or ≤ 0.8 for induction. When NMEs were considered as victim drugs, 21 NMEs had at least one positive clinical DDI, with three NMEs shown to be sensitive substrates of CYP3A (AUC ratio ≥ 5 when coadministered with strong inhibitors): cobimetinib, isavuconazole (the active metabolite of prodrug isavuconazonium sulfate), and ivabradine. As perpetrators, nine NMEs showed positive inhibition and three NMEs showed positive induction, with some of these interactions involving both enzymes and transporters. The most significant changes for inhibition and induction were observed with rolapitant, a moderate inhibitor of CYP2D6 and lumacaftor, a strong inducer of CYP3A. Physiologically based pharmacokinetics simulations and pharmacogenetics studies were used for six and eight NMEs, respectively, to inform dosing recommendations. The effects of hepatic or renal impairment on the drugs’ PK were also evaluated to support drug administration in these specific populations.

    Key Findings From Preclinical and Clinical Drug Interaction Studies Presented in New Drug and Biological License Applications Approved by the Food and Drug Administration in 2014

    Drug Metab Dispos. 2016 Jan; 44(1); 83-101.
    Published online 2015 Sep 30

    Abstract

    Regulatory approval documents contain valuable information, often not published, to assess the drug-drug interaction (DDI) profile of newly marketed drugs. This analysis aimed to systematically review all drug metabolism, transport, pharmacokinetics, and DDI data available in the new drug applications and biologic license applications approved by the U.S. Food and Drug Administration in 2014, using the University of Washington Drug Interaction Database, and to highlight the significant findings. Among the 30 new drug applications and 11 biologic license applications reviewed, 35 new molecular entities (NMEs) were well characterized with regard to drug metabolism, transport, and/or organ impairment and were fully analyzed in this review. In vitro, a majority of the NMEs were found to be substrates or inhibitors/inducers of at least one drug metabolizing enzyme or transporter. In vivo, when NMEs were considered as victim drugs, 16 NMEs had at least one in vivo DDI study with a clinically significant change in exposure (area under the time-plasma concentration curve or Cmax ratio ≥2 or ≤0.5), with 6 NMEs shown to be sensitive substrates of cytochrome P450 enzymes (area under the time-plasma concentration curve ratio ≥5 when coadministered with potent inhibitors): paritaprevir and naloxegol (CYP3A), eliglustat (CYP2D6), dasabuvir (CYP2C8), and tasimelteon and pirfenidone (CYP1A2). As perpetrators, seven NMEs showed clinically significant inhibition involving both enzymes and transporters, although no clinically significant induction was observed. Physiologically based pharmacokinetic modeling and pharmacogenetics studies were used for six and four NMEs, respectively, to optimize dosing recommendations in special populations and/or multiple impairment situations. In addition, the pharmacokinetic evaluations in patients with hepatic or renal impairment provided useful quantitative information to support drug administration in these fragile populations.

    Drug Disposition and Drug-Drug Interaction Data in 2013 FDA New Drug Applications: A Systematic Review

    Drug Metab Dispos. 2014 Dec; 42(12); 1991-2001.
    Published online 2014 Sep 30

    Abstract

    The aim of the present work was to perform a systematic review of drug metabolism, transport, pharmacokinetics, and DDI data available in the NDAs approved by the FDA in 2013, using the University of Washington Drug Interaction Database, and to highlight significant findings. Among 27 NMEs approved, 22 (81%) were well characterized with regard to drug metabolism, transport, or organ impairment, in accordance with the FDA drug interaction guidance (2012) and were fully analyzed in this review. In vitro, a majority of the NMEs were found to be substrates or inhibitors/inducers of at least one drug metabolizing enzyme or transporter. However, in vivo, only half (n = 11) showed clinically relevant drug interactions, with most related to the NMEs as victim drugs and CYP3A being the most affected enzyme. As perpetrators, the overall effects for NMEs were much less pronounced, compared with when they served as victims. In addition, the pharmacokinetic evaluation in patients with hepatic or renal impairment provided useful information for further understanding of the drugs’ disposition.

    e-PKGene: A Knowledge-Based Research Tool for Analysing the Impact of Genetics on Drug Exposure

    Abstract

    e-PKGene (www.pharmacogeneticsinfo.org) is a manually curated knowledge product developed in the Department of Pharmaceutics at the University of Washington, USA. The tool integrates information from the literature, public repositories, reference textbooks, product prescribing labels and clinical review sections of new drug approval packages. The database’s easy-to-use web portal offers tools for visualisation, reporting and filtering of information. The database helps scientists to mine pharmacokinetic and pharmacodynamic information for drug-metabolising enzymes and transporters, and provides access to available quantitative information on drug exposure contained in the literature. It allows in-depth analysis of the impact of genetic variants of enzymes and transporters on pharmacokinetic responses to drugs and metabolites. This review gives a brief description of the database organisation, its search functionalities and examples of use.