Detailed Evaluation of Pharmacokinetic-based Drug-drug Interaction Data Contained in New Drug and Biologic License Applications of Drugs Approved by the U.S. FDA in 2015

Presented at ASCPT conference, March 2017, Washington, DC, USA
Jingjing Yu, Zhu Zhou, Katie Owens, Tasha K. Ritchie, and Isabelle Ragueneau-Majlessi

2017 ASCPT Poster Presentation – 2015 NDA Review

Abstract

The aim of the present work was to perform a systematic analysis of metabolism, transport, and drug interaction data available in New Drug Applications (NDAs) and Biologic License Applications (BLAs) of drugs approved in 2015, and highlight significant findings.

What Can Be Learned From Recent New Drug Applications? A Systematic Review of Drug Interaction Data for Drugs Approved by the US FDA in 2015

Drug Metab Dispos. 2017 Jan; 45(1); 86-108.
Published online 2016 Nov 7

Abstract

As a follow up to previous reviews, the aim of the present analysis was to systematically examine all drug metabolism, transport, pharmacokinetics (PK), and drug-drug interaction (DDI) data available in the 33 new drug applications (NDAs) approved by the Food and Drug Administration (FDA) in 2015, using the University of Washington Drug Interaction Database, and to highlight the significant findings. In vitro, a majority of the new molecular entities (NMEs) were found to be substrates or inhibitors/inducers of at least one drug metabolizing enzyme or transporter. In vivo, 95 clinical DDI studies displayed positive PK interactions, with an area under the curve (AUC) ratio ≥ 1.25 for inhibition or ≤ 0.8 for induction. When NMEs were considered as victim drugs, 21 NMEs had at least one positive clinical DDI, with three NMEs shown to be sensitive substrates of CYP3A (AUC ratio ≥ 5 when coadministered with strong inhibitors): cobimetinib, isavuconazole (the active metabolite of prodrug isavuconazonium sulfate), and ivabradine. As perpetrators, nine NMEs showed positive inhibition and three NMEs showed positive induction, with some of these interactions involving both enzymes and transporters. The most significant changes for inhibition and induction were observed with rolapitant, a moderate inhibitor of CYP2D6 and lumacaftor, a strong inducer of CYP3A. Physiologically based pharmacokinetics simulations and pharmacogenetics studies were used for six and eight NMEs, respectively, to inform dosing recommendations. The effects of hepatic or renal impairment on the drugs’ PK were also evaluated to support drug administration in these specific populations.

Investigating ABCB1-Mediated Drug-Drug Interactions: Considerations for In Vitro and In Vivo Assay Design

Abstract

Background

ABCB1 is a key ABC efflux transporter modulating the pharmacokinetics of a large percentage of drugs. ABCB1 is also a site of transporter mediated drug-drug interactions (tDDI). It is the transporter most frequently tested for tDDIs both in vitro and in the clinic.

Objective

Understanding the limitations of various in vitro and in vivo models, therefore, is crucial. In this review we cover regulatory aspects of ABCB1 mediated drug transport as well as inhibition and the available models and methods. We also discuss protein structure and mechanistic aspects of transport as ABCB1 displays complex kinetics that involves multiple binding sites, potentiation of transport and probe-dependent IC50 values.

Results

Permeability of drugs both passive and mediated by transporters is also a covariate that modulates apparent kinetic values. Levels of expression as well as lipid composition of the expression system used in in vitro studies have also been acknowledged as determinates of transporter activity. ABCB1-mediated clinical tDDIs are often complex as multiple transporters as well as metabolic enzymes may play a role. This complexity often masks the role of ABCB1 in tDDIs.

Conclusion

It is expected that utilization of in vitro data will further increase with the refinement of simulations. It is also anticipated that transporter humanized preclinical models have a significant impact and utility.

Key Findings From Preclinical and Clinical Drug Interaction Studies Presented in New Drug and Biological License Applications Approved by the Food and Drug Administration in 2014

Drug Metab Dispos. 2016 Jan; 44(1); 83-101.
Published online 2015 Sep 30

Abstract

Regulatory approval documents contain valuable information, often not published, to assess the drug-drug interaction (DDI) profile of newly marketed drugs. This analysis aimed to systematically review all drug metabolism, transport, pharmacokinetics, and DDI data available in the new drug applications and biologic license applications approved by the U.S. Food and Drug Administration in 2014, using the University of Washington Drug Interaction Database, and to highlight the significant findings. Among the 30 new drug applications and 11 biologic license applications reviewed, 35 new molecular entities (NMEs) were well characterized with regard to drug metabolism, transport, and/or organ impairment and were fully analyzed in this review. In vitro, a majority of the NMEs were found to be substrates or inhibitors/inducers of at least one drug metabolizing enzyme or transporter. In vivo, when NMEs were considered as victim drugs, 16 NMEs had at least one in vivo DDI study with a clinically significant change in exposure (area under the time-plasma concentration curve or Cmax ratio ≥2 or ≤0.5), with 6 NMEs shown to be sensitive substrates of cytochrome P450 enzymes (area under the time-plasma concentration curve ratio ≥5 when coadministered with potent inhibitors): paritaprevir and naloxegol (CYP3A), eliglustat (CYP2D6), dasabuvir (CYP2C8), and tasimelteon and pirfenidone (CYP1A2). As perpetrators, seven NMEs showed clinically significant inhibition involving both enzymes and transporters, although no clinically significant induction was observed. Physiologically based pharmacokinetic modeling and pharmacogenetics studies were used for six and four NMEs, respectively, to optimize dosing recommendations in special populations and/or multiple impairment situations. In addition, the pharmacokinetic evaluations in patients with hepatic or renal impairment provided useful quantitative information to support drug administration in these fragile populations.

Organ Impairment-Drug-Drug Interaction Database: A Tool for Evaluating the Impact of Renal or Hepatic Impairment and Pharmacologic Inhibition on the Systemic Exposure of Drugs

CPT Pharmacometrics Syst Pharmacol. 2015 Aug; 4(8); 489-94.
Published online 2015 Jul 14

Abstract

The organ impairment and drug-drug interaction (OI-DDI) database is the first rigorously assembled database of pharmacokinetic drug exposure data from publicly available renal and hepatic impairment studies presented together with the maximum change in drug exposure from drug interaction inhibition studies. The database was used to conduct a systematic comparison of the effect of renal/hepatic impairment and pharmacologic inhibition on drug exposure. Additional applications are feasible with the public availability of this database.

Drug Disposition and Drug-Drug Interaction Data in 2013 FDA New Drug Applications: A Systematic Review

Drug Metab Dispos. 2014 Dec; 42(12); 1991-2001.
Published online 2014 Sep 30

Abstract

The aim of the present work was to perform a systematic review of drug metabolism, transport, pharmacokinetics, and DDI data available in the NDAs approved by the FDA in 2013, using the University of Washington Drug Interaction Database, and to highlight significant findings. Among 27 NMEs approved, 22 (81%) were well characterized with regard to drug metabolism, transport, or organ impairment, in accordance with the FDA drug interaction guidance (2012) and were fully analyzed in this review. In vitro, a majority of the NMEs were found to be substrates or inhibitors/inducers of at least one drug metabolizing enzyme or transporter. However, in vivo, only half (n = 11) showed clinically relevant drug interactions, with most related to the NMEs as victim drugs and CYP3A being the most affected enzyme. As perpetrators, the overall effects for NMEs were much less pronounced, compared with when they served as victims. In addition, the pharmacokinetic evaluation in patients with hepatic or renal impairment provided useful information for further understanding of the drugs’ disposition.

e-PKGene: A Knowledge-Based Research Tool for Analysing the Impact of Genetics on Drug Exposure

Abstract

e-PKGene (www.pharmacogeneticsinfo.org) is a manually curated knowledge product developed in the Department of Pharmaceutics at the University of Washington, USA. The tool integrates information from the literature, public repositories, reference textbooks, product prescribing labels and clinical review sections of new drug approval packages. The database’s easy-to-use web portal offers tools for visualisation, reporting and filtering of information. The database helps scientists to mine pharmacokinetic and pharmacodynamic information for drug-metabolising enzymes and transporters, and provides access to available quantitative information on drug exposure contained in the literature. It allows in-depth analysis of the impact of genetic variants of enzymes and transporters on pharmacokinetic responses to drugs and metabolites. This review gives a brief description of the database organisation, its search functionalities and examples of use.